Robot humanoid use laptop and sit at table for global network connection

MLCommons wants to create AI benchmarks for laptops, desktops and workstations

Robot humanoid use laptop and sit at table for global network connection

Image Credits: NanoStockk / Getty Images

As AI increasingly moves from the cloud to on-device, how, exactly, is one supposed to know whether such and such new laptop will run a generative-AI-powered app faster than rival off-the-shelf laptops — or desktops or all-in-ones, for that matter? Knowing could mean the difference between waiting a few seconds for an image to generate versus a few minutes — and as they say, time is money.

MLCommons, the industry group behind a number of AI-related hardware benchmarking standards, wants to make it easier to comparison shop with the launch of performance benchmarks targeted at “client systems” — that is, consumer PCs.

Today, MLCommons announced the formation of a new working group, MLPerf Client, whose goal is establishing AI benchmarks for desktops, laptops and workstations running Windows, Linux and other operating systems. MLCommons promises that the benchmarks will be “scenario-driven,” focusing on real end user use cases and “grounded in feedback from the community.”

To that end, MLPerf Client’s first benchmark will focus on text-generating models, specifically Meta’s Llama 2, which MLCommons executive director David Kanter notes has already been incorporated into MLCommons’ other benchmarking suites for datacenter hardware. Meta’s also done extensive work on Llama 2 with Qualcomm and Microsoft to optimize Llama 2 for Windows — much to the benefit of Windows-running devices.

“The time is ripe to bring MLPerf to client systems, as AI is becoming an expected part of computing everywhere,” Kanter said in a press release. “We look forward to teaming up with our members to bring the excellence of MLPerf into client systems and drive new capabilities for the broader community.”

Members of the MLPerf Client working group include AMD, Arm, Asus, Dell, Intel, Lenovo, Microsoft, Nvidia and Qualcomm — but notably not Apple.

Apple isn’t a member of the MLCommons, either, and a Microsoft engineering director (Yannis Minadakis) co-chairs the MLPerf Client group — which makes the company’s absence not entirely surprising. The disappointing outcome, however, is that whatever AI benchmarks MLPerf Client conjures up won’t be tested across Apple devices — at least not in the near-ish term.

Still, this writer’s curious to see what sort of benchmarks and tooling emerge from MLPerf Client, macOS-supporting or no. Assuming GenAI is here to stay — and there’s no indication that the bubble is about to burst anytime soon — I wouldn’t be surprised to see these types of metrics play an increasing role in device-buying decisions.

In my best-case scenario, the MLPerf Client benchmarks are akin to the many PC build comparison tools online, giving an indication as to what AI performance one can expect from a particular machine. Perhaps they’ll expand to cover phones and tablets in the future, even, given Qualcomm’s and Arm’s participation (both are heavily invested in the mobile device ecosystem). It’s clearly early days — but here’s hoping.

Yellow tailor meter, isolated on white background

Why most AI benchmarks tell us so little

Yellow tailor meter, isolated on white background

Image Credits: sergeyskleznev (opens in a new window) / Getty Images

On Tuesday, startup Anthropic released a family of generative AI models that it claims achieve best-in-class performance. Just a few days later, rival Inflection AI unveiled a model that it asserts comes close to matching some of the most capable models out there, including OpenAI’s GPT-4, in quality.

Anthropic and Inflection are by no means the first AI firms to contend their models have the competition met or beat by some objective measure. Google argued the same of its Gemini models at their release, and OpenAI said it of GPT-4 and its predecessors, GPT-3, GPT-2 and GPT-1. The list goes on.

But what metrics are they talking about? When a vendor says a model achieves state-of-the-art performance or quality, what’s that mean, exactly? Perhaps more to the point: Will a model that technically “performs” better than some other model actually feel improved in a tangible way?

On that last question, not likely.

The reason — or rather, the problem — lies with the benchmarks AI companies use to quantify a model’s strengths — and weaknesses.

Esoteric measures

The most commonly used benchmarks today for AI models — specifically chatbot-powering models like OpenAI’s ChatGPT and Anthropic’s Claude — do a poor job of capturing how the average person interacts with the models being tested. For example, one benchmark cited by Anthropic in its recent announcement, GPQA (“A Graduate-Level Google-Proof Q&A Benchmark”), contains hundreds of Ph.D.-level biology, physics and chemistry questions — yet most people use chatbots for tasks like responding to emails, writing cover letters and talking about their feelings.

Jesse Dodge, a scientist at the Allen Institute for AI, the AI research nonprofit, says that the industry has reached an “evaluation crises.”

“Benchmarks are typically static and narrowly focused on evaluating a single capability, like a model’s factuality in a single domain, or its ability to solve mathematical reasoning multiple choice questions,” Dodge told TechCrunch in an interview. “Many benchmarks used for evaluation are three-plus years old, from when AI systems were mostly just used for research and didn’t have many real users. In addition, people use generative AI in many ways — they’re very creative.”

The wrong metrics

It’s not that the most-used benchmarks are totally useless. Someone’s undoubtedly asking ChatGPT Ph.D.-level math questions. However, as generative AI models are increasingly positioned as mass market, “do-it-all” systems, old benchmarks are becoming less applicable.

David Widder, a postdoctoral researcher at Cornell studying AI and ethics, notes that many of the skills common benchmarks test — from solving grade school-level math problems to identifying whether a sentence contains an anachronism — will never be relevant to the majority of users.

“Older AI systems were often built to solve a particular problem in a context (e.g. medical AI expert systems), making a deeply contextual understanding of what constitutes good performance in that particular context more possible,” Widder told TechCrunch. “As systems are increasingly seen as ‘general purpose,’ this is less possible, so we increasingly see a focus on testing models on a variety of benchmarks across different fields.”

Errors and other flaws

Misalignment with the use cases aside, there’s questions as to whether some benchmarks even properly measure what they purport to measure.

An analysis of HellaSwag, a test designed to evaluate commonsense reasoning in models, found that more than a third of the test questions contained typos and “nonsensical” writing. Elsewhere, MMLU (short for “Massive Multitask Language Understanding”), a benchmark that’s been pointed to by vendors including Google, OpenAI and Anthropic as evidence their models can reason through logic problems, asks questions that can be solved through rote memorization.

HellaSwag
Test questions from the HellaSwag benchmark.

“[Benchmarks like MMLU are] more about memorizing and associating two keywords together,” Widder said. “I can find [a relevant] article fairly quickly and answer the question, but that doesn’t mean I understand the causal mechanism, or could use an understanding of this causal mechanism to actually reason through and solve new and complex problems in unforseen contexts. A model can’t either.”

Fixing what’s broken

So benchmarks are broken. But can they be fixed?

Dodge thinks so — with more human involvement.

“The right path forward, here, is a combination of evaluation benchmarks with human evaluation,” he said, “prompting a model with a real user query and then hiring a person to rate how good the response is.”

As for Widder, he’s less optimistic that benchmarks today — even with fixes for the more obvious errors, like typos — can be improved to the point where they’d be informative for the vast majority of generative AI model users. Instead, he thinks that tests of models should focus on the downstream impacts of these models and whether the impacts, good or bad, are perceived as desirable to those impacted.

“I’d ask which specific contextual goals we want AI models to be able to be used for and evaluate whether they’d be — or are — successful in such contexts,” he said. “And hopefully, too, that process involves evaluating whether we should be using AI in such contexts.”